Station 1: Factoring special products

Find the GCF of each term, and write the polynomial as a product of the GCF and the remainder.

Examples:

$$10x^{2} + 15x^{3}$$

$$= 5x^{2}(2) + 5x^{2}(3x)$$

$$= 5x^{2}(2 + 3x)$$
GCF = 5x^{2}
factor out the GCF

$$-4x^{5}y^{2} + 10x^{4}y - 6x^{2}y^{2}$$

$$= 2x^{2}y(-2x^{3}y) + 2x^{2}y(5x^{2}) + 2x^{2}y(-3y)$$
GCF = $2x^{2}y$
factor out the GCF
$$= 2x^{2}y(-2x^{3}y + 5x^{2} - 3y)$$

Maroon	White
1. $10y^2 + 12y^3$	1. $12t^5 + 15t^2$
2. $5x^4y - 8x^2y^2$	2. $9x^5y^3 - 10x^4y$
3. $6x^4 + 15x^3 - 9x^2$	3. $8x^5 - 6x^4 + 14x^2$
4. $11x^4y^2 - 7x^3y + 4xy^3$	$4.8x^5y + 18xy^4 - 9x^2y^2$

Station 2: Factoring by grouping

Write in standard form. Group pairs of terms, factor out the GCF of each group to get a common factor, then combine.

Examples:

$$2x^{3} + +5 + 2x + 5x^{2}$$

$$= 2x^{3} + 5x^{2} + 2x + 5$$

$$= (2x^{3} + 5x^{2}) + (2x + 5)$$

$$= (x^{2}(2x) + x^{2}(5)) + (1(2x) + 1(5))$$

$$= (x^{2}(2x + 5)) + (1(2x + 5))$$

$$= (x^{2} + 1)(2x + 5)$$

(put in standard form) (group terms) (factor out the GCF of each group)

$$4m^{3} - 12m^{2} + 15 - 5m$$

= $4m^{3} - 12m^{2} - 5m + 15$
= $(4m^{3} - 12m^{2}) - (5m + 15)$
= $(4m^{2}(m) + 4m^{2}(-3)) + (5(-m) + 5(3))$
= $(4m^{2}(m - 3)) + (5(-m + 3))$
= $(4m^{2}(m - 3)) - (5(m - 3))$
= $(4m^{2} - 5)(m - 3)$

(put in standard form) (group terms) (factor out the GCF of each group) (factor out -1 to get (m - 3)in common)

Maroon	White
1. $2y^3 + 6y^2 + y + 3$	1. $3n^4 + 2n^3 - 15n - 10$
2. $12a^2 + 30a - 14a - 35$	2. $15x^2 + 12x - 5x - 4$
3. $3b^4 - 24b^3 + b - 8$	3. $3x^3 - 12x^2 + 20 - 5x$
$4.6x^3 + 3x^2y + 10xy + 5y^2$	4. $4x^2 + 3x - 8xy^2 - 6y^2$

Station 3: Solving by factoring

Find which special product the polynomial matches, and use the rule to factor.

Examples:

 $x^{2} = 16$ $x^{2} - 16 = 0$ (x + 4)(x - 4) = 0 (x + 4) = 0 or (x - 4) = 0x = -4 or x = 4

(move everything to one side)(factor the polynomial)(since the product is 0)(solve both equations)

$$4x^{2} + 4x = -1$$

$$4x^{2} + 4x + 1 = 0$$

$$(2x + 1)(2x + 1) = 0$$

$$(2x + 1) = 0 \text{ or } (2x + 1) = 0$$

$$2x = -1 \text{ or } 2x = -1$$

$$x = -\frac{1}{2} \text{ or } x = -\frac{1}{2}$$

$$x = -\frac{1}{2}$$

(move everything to one side) (factor the polynomial (since the product is 0) (solve both equations)

(since both equations have the same answer)

Student problems: Solve by factoring.

Maroon	White
1. $x^2 = 25$	1. $x^2 = 4$
2. $x^2 - 6x + 9 = 0$	2. $x^2 - 10x + 25 = 0$
$3.4x^2 - x = 3$	3. $5x^2 + 13x = 6$
$4.4x^2 + 14x + 12 = 0$	$4.\ 6x^2 + 9x + 3 = 0$

Station 4: Factoring $x^2 + bx + c$

The coefficient of x^2 is 1, so after finding a table of factors there is no need to factor by grouping.

Guess and check, or use a table of factors of *c*.

Examples:

$x^2 - 6x + 8$	Product	Factors	Sum	-
	8 =	-1×-8	$\begin{vmatrix} -1x + -8x = \end{vmatrix} -9x$	
	8 =	-2×-4	$\begin{vmatrix} -2x + -4x = \end{vmatrix} -8x$	

 $x^{2} + 6x + 8 = (x - 2)(x - 4).$

$x^2 + 3x - 4$	Product	Factors	Sum	
	-4 =	-1×4	-1x + 4x =	3 <i>x</i>
	-4 =	-2×2	-2x+2x =	0 <i>x</i>

 $x^{2} + 3x - 4 = (x - 1)(x + 4).$

Maroon	White
1. $x^2 + 10x + 24$	1. $x^2 + 12y + 20$
2. $y^2 - 16y + 28$	2. $a^2 - 20a + 36$
3. $z^2 - 2z - 63$	3. $g^2 - 2g - 48$
4. $b^2 + 11b - 42$	4. $z^2 + 3z - 28$

Station 5: Factoring $ax^2 + bx + c$ (part 1) The coefficient of x^2 is not 1, so after finding a table of factors of ac, factor by grouping.

Examples:

$3x^2 + x - 4$	Product	Factors	Sum	
3(-4) = -12	-12 =	-1×12	-1x + 12x =	11 <i>x</i>
	-12 =	1×-12	1x - 12x =	-11x
	-12 =	-2×6	-2x + 6x =	4 <i>x</i>
	-12 =	2×-6	2x - 6x =	-4x
	-12 =	-3×4	-3x + 4x =	x
L.	-12 =	3×-4	3x - 4x =	- <i>x</i>
$3x^2 + x - 4 = 3x^2 - 3x + 4x - 4$				
= 3x(x-1) + 4(x-1)				

$$= (3x+4)(x-1)$$

Maroon	White
1. $5x^2 + 17x + 6$	1. $3x^2 + 17x + 20$
$2.5x^2 + 7x - 6$	2. $2x^2 - 11x - 13$
3. $5x^2 - 22x + 8$	3. $5x^2 - 48x + 27$

Station 6: Factoring $ax^2 + bx + c$ (part 2) The coefficient of x^2 is not 1, so after finding a table of factors of ac, factor by grouping.

Examples:

$9x^2 - 3x - 2$	Product	Factors	Sum	
9(-2) = -18	-18 =	-1×18	-1x + 18x =	17 <i>x</i>
	-18 =	1×-18	1x - 18x =	-17x
	-18 =	-2×9	-2x + 9x =	7 <i>x</i>
	-18 =	2×-9	2x - 9x =	-7x
	-18 =	-3×6	-3x + 6x =	3 <i>x</i>
	-18 =	3×-6	3x - 6x =	-3x
2		I		

$$9x^{2} - 3x - 2 = 9x^{2} + 3x - 6x - 2$$

= 3x(3x + 1) - 2(3x + 1)
= (3x - 2)(3x + 1)

Maroon	White
1. $4x^2 + 24x + 27$	1. $4x^2 + 11x + 7$
2. $8x^2 + 29x - 12$	2. $6x^2 + x - 40$
3. $8x^2 - 73x + 9$	3. $6x^2 - 23x + 20$

lame	Required: 3 problems each station. 4 problems for bonu	s points Maroon / White
Station 1	Station 2	Station 3
	I	

Station 4	Station 5	Station 6
	-	
	1	

2 problems required for stations 5 and 6, or 3 problems for bonus