Station 1: Factoring special products

Find the GCF of each term, and write the polynomial as a product of the GCF and the remainder.

Examples:

$10 x^{2}+15 x^{3}$
GCF $=5 x^{2}$
$=5 x^{2}(2)+5 x^{2}(3 x)$
factor out the GCF
$=5 x^{2}(2+3 x)$
$-4 x^{5} y^{2}+10 x^{4} y-6 x^{2} y^{2}$
GCF $=2 x^{2} y$
$=2 x^{2} y\left(-2 x^{3} y\right)+2 x^{2} y\left(5 x^{2}\right)+2 x^{2} y(-3 y)$
factor out the GCF
$=2 x^{2} y\left(-2 x^{3} y+5 x^{2}-3 y\right)$

Student problems: Factor the following.

Maroon
White

1. $10 y^{2}+12 y^{3}$
2. $12 t^{5}+15 t^{2}$
3. $5 x^{4} y-8 x^{2} y^{2}$
4. $9 x^{5} y^{3}-10 x^{4} y$
5. $6 x^{4}+15 x^{3}-9 x^{2}$
6. $8 x^{5}-6 x^{4}+14 x^{2}$
7. $11 x^{4} y^{2}-7 x^{3} y+4 x y^{3}$
8. $8 x^{5} y+18 x y^{4}-9 x^{2} y^{2}$

Station 2: Factoring by grouping

Write in standard form. Group pairs of terms, factor out the GCF of each group to get a common factor, then combine.

Examples:

$$
\begin{array}{ll}
2 x^{3}++5+2 x+5 x^{2} & \\
=2 x^{3}+5 x^{2}+2 x+5 & \text { (put in standard form) } \\
=\left(2 x^{3}+5 x^{2}\right)+(2 x+5) & \text { (group terms) } \\
=\left(x^{2}(2 x)+x^{2}(5)\right)+(1(2 x)+1(5)) & \text { (factor out the GCF of each } \\
=\left(x^{2}(2 x+5)\right)+(1(2 x+5)) & \text { group) } \\
=\left(x^{2}+1\right)(2 x+5) & \\
=\left(4 m^{3}-12 m^{2}+15-5 m\right. & \text { (put in standard form) } \\
=4 m^{3}-12 m^{2}-5 m+15 & \text { (group terms) } \\
=\left(4 m^{2}(m)+4 m^{2}(-3)\right)+(5(-m)+5(3)) & \text { (factor out the GCF of each } \\
=\left(4 m^{2}(m-3)\right)+(5(-m+3)) & \text { group) } \\
=\left(4 m^{2}(m-3)\right)-(5(m-3)) & \text { (factor out -1 to get }(m-3) \\
=\left(4 m^{2}-5\right)(m-3) & \text { in common) }
\end{array}
$$

Student problems: Factor the following.

Maroon
White

1. $2 y^{3}+6 y^{2}+y+3$
2. $3 n^{4}+2 n^{3}-15 n-10$
3. $12 a^{2}+30 a-14 a-35$
4. $15 x^{2}+12 x-5 x-4$
5. $3 b^{4}-24 b^{3}+b-8$
6. $3 x^{3}-12 x^{2}+20-5 x$
$4.6 x^{3}+3 x^{2} y+10 x y+5 y^{2}$
7. $4 x^{2}+3 x-8 x y^{2}-6 y^{2}$

Station 3: Solving by factoring

Find which special product the polynomial matches, and use the rule to factor.

Examples:

$$
\begin{aligned}
& x^{2}=16 \\
& x^{2}-16=0 \\
& (x+4)(x-4)=0 \\
& (x+4)=0 \text { or }(x-4)=0 \\
& x=-4 \text { or } x=4
\end{aligned}
$$

$$
4 x^{2}+4 x=-1
$$

$$
4 x^{2}+4 x+1=0
$$

$$
(2 x+1)(2 x+1)=0
$$

$$
(2 x+1)=0 \text { or }(2 x+1)=0
$$

$$
2 x=-1 \text { or } 2 x=-1
$$

$$
x=-\frac{1}{2} \text { or } x=-\frac{1}{2}
$$

$$
x=-\frac{1}{2}
$$

(move everything to one side) (factor the polynomial) (since the product is 0) (solve both equations)
(move everything to one side)
(factor the polynomial
(since the product is 0)
(solve both equations)
(since both equations have the same answer)

Student problems: Solve by factoring.

White

$$
\text { 1. } x^{2}=25
$$

1. $x^{2}=4$
2. $x^{2}-6 x+9=0$
3. $x^{2}-10 x+25=0$
$3.4 x^{2}-x=3$
4. $5 x^{2}+13 x=6$
$4.4 x^{2}+14 x+12=0$
5. $6 x^{2}+9 x+3=0$

Station 4: Factoring $x^{2}+b x+c$

The coefficient of x^{2} is 1 , so after finding a table of factors there is no need to factor by grouping.

Guess and check, or use a table of factors of c.

Examples:

\[

\]

Student problems: Factor the following.

Maroon

White

1. $x^{2}+10 x+24$
2. $x^{2}+12 y+20$
3. $y^{2}-16 y+28$
4. $a^{2}-20 a+36$
5. $z^{2}-2 z-63$
6. $g^{2}-2 g-48$
7. $b^{2}+11 b-42$
8. $z^{2}+3 z-28$

Station 5: Factoring $a x^{2}+b x+c \quad$ (part 1)

The coefficient of x^{2} is not 1 , so after finding a table of factors of $a c$, factor by grouping.

Examples:

$3 x^{2}+x-4$	Product	Factors	Sum	
$3(-4)=-12$	$-12=$	-1×12	$-1 x+12 x=$	$11 x$
	$-12=$	1×-12	$1 x-12 x=$	$-11 x$
	$-12=$	-2×6		
$-2 x+6 x=$	$4 x$			
	$-12=$	2×-6	$2 x-6 x=$	$-4 x$
	$-12=$	-3×4	$-3 x+4 x=$	x
$3 x^{2}+x-4=$	$3 x^{2}-3 x+4 x-4$	3×-4	$3 x-4 x=$	$-x$
	$=3 x(x-1)+4(x-1)$			
	$=(3 x+4)(x-1)$			

Student problems: Factor the following.

1. $5 x^{2}+17 x+6$
2. $3 x^{2}+17 x+20$
$2.5 x^{2}+7 x-6$
3. $2 x^{2}-11 x-13$
4. $5 x^{2}-22 x+8$
5. $5 x^{2}-48 x+27$

Station 6: Factoring $a x^{2}+b x+c \quad$ (part 2)

The coefficient of x^{2} is not 1 , so after finding a table of factors of $a c$, factor by grouping.

Examples:

$$
\begin{array}{ll|l||}
9 x^{2}-3 x-2 & \text { Product } & \text { Factors } \\
9(-2)=-18 & -18= & -1 \times 18 \\
& -18= & 1 \times-18 \\
& -18= & -2 \times 9 \\
& -18= & 2 \times-9 \\
-18= & -3 \times 6 & \\
9 x^{2}-3 x-2= & 9 x^{2}+3 x-6 x-2 \\
& =3 x(3 x+1)-2(3 x+1) \\
& =(3 x-2)(3 x+1)
\end{array}
$$

Product	Factors	Sum	
$-18=$	-1×18	$-1 x+18 x=$	$17 x$
$-18=$	1×-18	$1 x-18 x=$	$-17 x$
$-18=$	-2×9	$-2 x+9 x=$	$7 x$
$-18=$	2×-9	$2 x-9 x=$	$-7 x$
$-18=$	-3×6	$-3 x+6 x=$	$3 x$
$-18=$	3×-6	$3 x-6 x=$	$-3 x$

Student problems: Factor the following.

1. $4 x^{2}+24 x+27$
2. $4 x^{2}+11 x+7$
3. $8 x^{2}+29 x-12$
4. $6 x^{2}+x-40$
5. $8 x^{2}-73 x+9$
6. $6 x^{2}-23 x+20$

2 problems required for stations 5 and 6 , or 3 problems for bonus

Station 4 Station 5		Station 6

